The reflexivity of hyperexpansions and their Cauchy dual operators.

1

Deepak Kumar Pradhan SMU Post-Doc Symposium August 24, 2019

Indian Statistical Institute, Bangalore Centre

Theorem (Von Neumann) Let $T \in \mathcal{B}(\mathcal{H})$ be normal. If SP = PS for any projection P such that TP = PT, then S, belongs to weakly close star algebra generated by T and identity.

Theorem (Von Neumann) Let $T \in \mathcal{B}(\mathcal{H})$ be normal. If SP = PS for any projection P such that TP = PT, then S, belongs to weakly close star algebra generated by T and identity.

Theorem (Sarason-1966)

Let $T \in \mathcal{B}(\mathcal{H})$ be normal. If PSP = SP for any projection P such that, PTP = TP, then $S \in \mathcal{W}(T)$, where $\mathcal{W}(T)$ is the weakly closed algebra generated by T and identity.

Stronger hypothesis, and stronger conclusion!!

Theorem (Von Neumann)

Let $T \in \mathcal{B}(\mathcal{H})$ be normal. If SP = PS for any projection P such that TP = PT, then S, belongs to weakly close star algebra generated by T and identity.

Theorem (Sarason-1966)

Let $T \in \mathcal{B}(\mathcal{H})$ be normal. If PSP = SP for any projection P such that, PTP = TP, then $S \in \mathcal{W}(T)$, where $\mathcal{W}(T)$ is the weakly closed algebra generated by T and identity.

Stronger hypothesis, and stronger conclusion!!

Theorem (Sarason-66)

Let A and B be analytic Toeplitz operators, and if B leaves invariant every invariant subspace of A, then B belongs to the weakly closed algebra generated by A Let, the collection of all invariant subspaces of T is denoted by LatT.

Definition

Let $\mathscr{W}(T)$ be WOT-closed sub-algebra of $\mathcal{B}(\mathcal{H})$ generated by T and identity I.

$$\mathsf{Lat}\mathscr{W}(T) = \bigcap_{S \in \mathscr{W}(T)} \mathsf{Lat}S$$

Let \mathscr{F} be any collection of subspaces of \mathcal{H} , then define

 $\mathsf{Alg}\mathscr{F} = \{A \in \mathcal{B}(\mathcal{H}) : \mathscr{F} \subset \mathsf{Lat}A\}.$

Definition (Reflexivity- Rajdavi and Rosenthal 1968) An operator $T \in \mathcal{B}(\mathcal{H})$ is called reflexive if

AlgLat $\mathscr{W}(T) = \mathscr{W}(T)$.

Remark For every $T \in \mathcal{B}(\mathcal{H})$,

 $\mathscr{W}(T) \subset \mathbf{AlgLat}T.$

- Sarason-1966: Normal operators are reflexive.
- Olin & Thomson-1982: Sub-normal operators are reflexive.
- Sarason-1966: Unilateral shift on multiplicity one is reflexive.
- Deddens-1971: Every isometry is reflexive.
- Sheild-1974: If *T* an injective unilateral weighted shift, such that *T*^{*} has a non zero eigenvalue, then *T* is reflexive.

- Sarason-1966: Normal operators are reflexive.
- Olin & Thomson-1982: Sub-normal operators are reflexive.
- Sarason-1966: Unilateral shift on multiplicity one is reflexive.
- Deddens-1971: Every isometry is reflexive.
- Sheild-1974: If *T* an injective unilateral weighted shift, such that *T*^{*} has a non zero eigenvalue, then *T* is reflexive.
- Let H be a scalar reproducing kernel Hilbert space, then the multiplier algebra M(H) is reflexive.

Definition (Reproducing Kernel Hilbert space) Let $\mathcal{H} \subset \mathcal{F}(\triangle, \mathbb{C})$ be a complex separable Hilbert space.

We say \mathcal{H} is a reproducing kernel Hilbert space (rkHs), if for every $w \in \triangle$, there exists $c_w \ge 0$

 $|f(w)| \leq c_w ||f||_{\mathcal{H}}$, for all $f \in \mathcal{H}$.

Equivalently, there exits parametrized family $\{k_w\}_{w \in \triangle} \subset \mathcal{H}$, such that,

 $f(w) = \langle f, k_w \rangle.$

Definition (Reproducing Kernel Hilbert space) Let $\mathcal{H} \subset \mathcal{F}(\triangle, \mathbb{C})$ be a complex separable Hilbert space. We say \mathcal{H} is a reproducing kernel Hilbert space (rkHs), if for every $w \in \triangle$, there exists $c_w \ge 0$

 $|f(w)| \leq c_w ||f||_{\mathcal{H}}, \text{ for all } f \in \mathcal{H}.$

Equivalently, there exits parametrized family $\{k_w\}_{w \in \triangle} \subset \mathcal{H}$, such that,

 $f(w) = \langle f, k_w \rangle.$

Definition (Multiplier Algebra)

 $\mathcal{M}(\mathcal{H}) := \{ \phi \in \mathcal{F}(\triangle, \mathbb{C}) : f \in \mathcal{H} \text{ implies } \phi f \in \mathcal{H} \}.$

Definition (Reproducing Kernel Hilbert space) Let $\mathcal{H} \subset \mathcal{F}(\triangle, \mathbb{C})$ be a complex separable Hilbert space. We say \mathcal{H} is a reproducing kernel Hilbert space (rkHs), if for every $w \in \triangle$, there exists $c_w \ge 0$

 $|f(w)| \leq c_w ||f||_{\mathcal{H}}, \text{ for all } f \in \mathcal{H}.$

Equivalently, there exits parametrized family $\{k_w\}_{w \in \triangle} \subset \mathcal{H}$, such that,

 $f(w) = \langle f, k_w \rangle.$

Definition (Multiplier Algebra)

 $\mathcal{M}(\mathcal{H}) := \{ \phi \in \mathcal{F}(\triangle, \mathbb{C}) : f \in \mathcal{H} \text{ implies } \phi f \in \mathcal{H} \}.$

For $\phi \in \mathcal{M}(\mathcal{H})$

$$M^*_{\phi}(k_w) = \overline{\phi(w)}k_w, \quad w \in \triangle.$$

Definition (Reproducing Kernel Hilbert space) Let $\mathcal{H} \subset \mathcal{F}(\triangle, \mathbb{C})$ be a complex separable Hilbert space. We say \mathcal{H} is a reproducing kernel Hilbert space (rkHs), if for every $w \in \triangle$, there exists $c_w \geq 0$

 $|f(w)| \leq c_w ||f||_{\mathcal{H}}$, for all $f \in \mathcal{H}$.

Equivalently, there exits parametrized family $\{k_w\}_{w \in \triangle} \subset \mathcal{H}$, such that,

 $f(w) = \langle f, k_w \rangle.$

Definition (Multiplier Algebra)

 $\mathcal{M}(\mathcal{H}) := \{ \phi \in \mathcal{F}(\triangle, \mathbb{C}) : f \in \mathcal{H} \text{ implies } \phi f \in \mathcal{H} \}.$

For $\phi \in \mathcal{M}(\mathcal{H})$

$$M^*_{\phi}(k_w) = \overline{\phi(w)}k_w, \quad w \in \triangle.$$

 $\mathcal{M}(\mathcal{H})$ is unital weakly closed reflexive algebra.

A reproducing kernel is called complete Nevanlinna Pick type: Given $n \in \mathbb{Z}_+$, if an operator $R : V (:= sp\{k_{w_1}, \dots, k_{w_n}\}) \to V$

 $R(k_{\lambda_i}) = \lambda_i k_{w_i},$

is a contraction, then there exists a $\phi \in \mathcal{M}(\mathcal{H})$ such that M_{ϕ} is a contraction and $M_{\phi}^*|_V = R$.

An weakly closed unital sub-algebra \mathscr{W} of $\mathcal{B}(\mathcal{H})$ is called super-reflexive, if every weakly closed unital sub-algebra of \mathscr{W} is reflexive.

An weakly closed unital sub-algebra \mathscr{W} of $\mathcal{B}(\mathcal{H})$ is called super-reflexive, if every weakly closed unital sub-algebra of \mathscr{W} is reflexive.

Theorem (Davidson & Hamilton-2011)

For a CNP kernel k, the multiplier algebra $\mathcal{M}(\mathcal{H}_k)$ is super reflexive.

Definition For $T \in \mathcal{B}(\mathcal{H})$ define

$$B_n(T) := \sum_{p=0}^n (-1)^p \binom{n}{p} T^{*p} T^p.$$
(1)

- (i) *T* is said to be *completely hyperexpansive* if $B_n(T) \leq 0$ for all $n \in \mathbb{N}$.
- (ii) For $m \in \mathbb{N}$, *T* is said to be *m*-hyperexpansive if $B_n(T) \leq 0$ for n = 1, ..., m.
- (iii) *T* is said to be *m*-isometric if $B_m(T) = 0$, for some $m \in \mathbb{N}$.

Definition For $T \in \mathcal{B}(\mathcal{H})$ define

$$B_n(T) := \sum_{p=0}^n (-1)^p \binom{n}{p} T^{*p} T^p.$$
(1)

- (i) *T* is said to be *completely hyperexpansive* if $B_n(T) \leq 0$ for all $n \in \mathbb{N}$.
- (ii) For $m \in \mathbb{N}$, *T* is said to be *m*-hyperexpansive if $B_n(T) \leq 0$ for n = 1, ..., m.
- (iii) *T* is said to be *m*-isometric if $B_m(T) = 0$, for some $m \in \mathbb{N}$.

Example

- (1) An 2-isometry is completely hyperexanpsive.
- (2) An isometry is completely hyperexpansive.

Definition (Dirichlet space)

Let \mathcal{D} , denote the space of analytic functions on a Hilbert space of analytic functions defined as follows:

$$\mathcal{D} := \{ f \in \mathcal{O}(\mathbb{D}, \mathbb{C}) : D(f) < \infty \}$$

where

$$D(f) := \int_{\mathbb{D}} |f'(\zeta)|^2 dA(\zeta), \tag{2}$$

and *dA*, is the normalized area measure on \mathbb{D} . Let M_z , denote the multiplication by coordinate function

$$(M_z f)\omega = \omega f(w), \quad \omega \in \triangle.$$

• M_z is cyclic 2-isometry, and hence completely hyperexpansive.

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ is an analytic (i.e. $\cap_n T^n(\mathcal{H}) = 0$), completely hyperexpansive operator, such that dim $(\mathcal{H} \ominus T(\mathcal{H})) = 1$. Then there exists a positive Borel measure μ on $\overline{\mathbb{D}}$ such that T is unitarily equivalent to M_z on

$$\mathcal{D}_{\mu} \coloneqq \{ f \in \mathcal{O}(\mathbb{D}, \mathbb{C}) : \|f\|_{\mu} < \infty \}$$

where

$$||f||_{\mu}^{2} := \sum_{n=0}^{\infty} |\hat{f}(n)|^{2} + \int_{\mathbb{D}} |f'(\zeta)|^{2} U_{\mu}(\zeta) dm(\zeta),$$
(3)

and dm is the normalized area measure on \mathbb{D} . Further

$$U_{\mu}(\zeta) := \int_{\mathbb{D}} \log \left| \frac{1 - \overline{z}\zeta}{\zeta - z} \right| \frac{d\mu(z)}{1 - |z|^2} + \int_{\partial \mathbb{D}} \frac{1 - |\zeta|^2}{|z - \zeta|^2} d\mu(z), \quad \zeta \in \mathbb{D}.$$
(4)

Theorem (S. Podder, —) Let $T \in B(H)$ be completely hyperexpansive with dim $(H \ominus T(H)) = 1$. Then T is super-reflexive.

Corollary

If T is a cyclic 2-isometry in $B(\mathcal{H})$, then T is super-reflexive.

- A. Aleman, *The multiplication operators on Hilbert spaces of analytic functions*, Habilitationsschrift, Fernuniversität Hagen, 1993.
- A. Athavale, On completely hyperexpansive operators, *Proc. Amer. Math. Soc.* **124** (1996), 3745-3752.
- K. R. Davidson and R. Hamilton, Nevanlinna-Pick interpolation and factorization of linear functionals, *Integral Equations Operator Theory* 70 (2011), 125-149.
- J. A. Deddens, Every isometry is reflexive, *Proc. Amer. Math. Soc.* 28 (1971), 509-512.
- J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, *Linear Algebra and Appl.* **10** (1975), 89-93.
- - M. Faghih-Ahmadi and K. Hedayatian, m-isometric weighted shifts and reflexivity of some operators, *Rocky Mountain J. Math.* **43** (2013), 123-133.
- D. W. Hadwin and E. A. Nordgren, Subalgebras of reflexive algebras, *J. Operator Theory* **7** (1982), 3-23.

- John McCarthy, Reflexivity of subnormal operators. *Pacific J. Math.* **161** (1993), no. 2, 359-370.
- S. Richter, A representation theorem for cyclic analytic two-isometries, *Trans. Amer. Math. Soc.* **328** (1991), 325-349.
- D.Sarason, Invariant subspaces and unstarred operator algebras. *Pacific J. Math.* **17** (1966), 511-517.
- S. Shimorin, Complete Nevanlinna-Pick property of Dirichlet-type spaces, *J. Funct. Anal.* **191** (2002), 276-296.
- Shubhankar Podder, Deepak Kumar Pradhan, The reflexivity of hyperexpansions and their Cauchy dual operators, arXiv:1810.05605 [math.FA]